
An Introduction to HASE = Holes in Pointed Affine Semigroups

Florian Kohl Yanxi Li Johannes Rauh Ruriko Yoshida

August 12, 2016

Contents

1 Preface 1

2 The Basics 1
2.1 Theoretical Background . 1
2.2 A First Example . 2
2.3 Frobenius Revisited . 3
2.4 A Bigger Example . 4

3 More Options 5

1 Preface

HASE is a program that computes holes of pointed, affine semigroups. It is an implementation of
the algorithm described by Hemmecke, Yoshida, and Takemura, for more information see [Hemmecke
et al., 2009]. The program itself is written in Python 3, but it internally uses (and hence is dependent
on) Normaliz[Bruns et al.], Macaulay2 [Grayson and Stillman], and on 4ti2 [4ti2 team, 2008]. The
dependence on 4ti2 however is not strict, as there is the –Nsolve option avoiding 4ti2.

2 The Basics

2.1 Theoretical Background

This subsection is taken from [Kohl et al., 2016].
Let A ∈ Zm×n be a matrix with integral entries. Moreover, let Z+ = {0, 1, 2, 3, . . . } be the set of

nonnegative integers and let R+ = [0,∞). Then the semigroup generated by the columns a1, a2, . . . ,
an of A is the set

Q = Q(A) = {a1x1 + · · ·+ anxn | x1, . . . , xn ∈ Z+} . (1)

Let K = K(A) be the cone generated by the columns a1, . . . ,an of A, i. e.

K = K(A) = {a1x1 + · · ·+ anxn | x1, . . . , xn ∈ R+} .

1

The lattice L = L(A) generated by the columns a1, . . . ,an of A is given by

L = L(A) = {a1x1 + · · ·+ anxn | x1, . . . , xn ∈ Z} .

The semigroup Qsat = K ∩ L is called the saturation of the semigroup Q with respect to the lattice
L. It follows that Q ⊂ Qsat and we call Q saturated if Q = Qsat (this is also called normal). We call
H = Qsat \ Q the set of holes of the semigroup Q. A hole h ∈ H is fundamental if there is no other
hole h′ ∈ H such that h− h′ ∈ Q. Note that in contrast to H, F is always finite as it is contained in
the fundamental parallelepiped, see [Takemura and Yoshida, 2008]. Let us illustrate these definitions
in a small example.

Example 2.1 (The Frobenius Problem). Let p, q be two positive, coprime integers. In the notation
above, this means A = (p, q) ∈ A1×2. The semigroup generated by the columns of A is

Q(A) = {n ∈ Z+|n = ap + bq , where a, b ∈ Z+} .

It is a direct consequence of Bezout’s theorem that the lattice generated by p and q is L(A) = Z.
However, if p and q are not coprime, then L(A) 6= Z. Furthermore, we have that K(A) = R+. The
saturation Qsat = K(A) ∩ L(A) = R+ ∩ Z = Z+. Thus, the set of holes H = Qsat \ Q is the of
nonnegative integers that cannot be written as a positive, linear, integral combination of p and q. It
is a theorem that there are only finitely many holes in Q(A). The Frobenius problem asks to find the
largest number that cannot be written as such a combination of p and q. This number is called the
Frobenius number and it is denoted g(p, q). Moreover, it can be shown that

g(p, q) = pq − p− q

for a proof this theorem, see [Beck and Robins, 2007, Theorem 1.2, p. 6].
If we now choose p = 3 and q = 7, we can see that

H = {1, 2, 4, 5, 8, 11}.

and
F = {1, 2}.

2.2 A First Example

Let us now turn to an explicit computation of holes in an affine semigroup. Let Q(A) be the semigroup
generated by (1, 0)t, (1, 2)t, (1, 3)t, and (1, 4)t. This means that

A =

(
1 1 1 1
0 2 3 4

)
.

To compute the holes with HASE, we need to create an input-file example.mat which looks like

2 4
1 1 1 1
0 2 3 4

The first line specifies the dimension of the matrix and the other lines is the matrix A. We have to
make sure that this file is in the same folder as Normaliz and ZSolve, which is an application from
4ti2. Now we can run the program by entering

python3 hase . py −−normal iz ” . / normal iz ” −v example

into the terminal. The output looks like

2

Using temporary d i r e c t o r y /tmp/tmp080qluh7/
Read example . mat . 4 gene ra to r s in dimension 2 .
>>>>> Running normal iz to compute the fundamental ho l e s .
Normaliz found 1 fundamental ho l e s .
Looking at ho le [1 1]
>>>>> Running z s o l v e to f i n d the minimal s o l u t i o n s to f = Am − Al .
>>>>> Running M2 to compute the standard p a i r s . Output :

1 : {x0}

This output means that there is one fundamental hole (1, 1)t and H can be described as

H =
{

(1, 1)t + m(1, 0)t : m ∈ Z+

}
.

As mentioned in the preface, there is the option –Nsolve, which uses Normaliz to determine the
integer solutions instead of using 4ti2. The command now looks like

python3 hase . py −−normal iz ” . / normal iz ” −−Nsolve ” ./ normal iz ” −v b e i s p i e l

The output now is

Read b e i s p i e l . mat . 4 gene ra to r s in dimension 2 .
>>>>> Running normal iz to compute the fundamental ho l e s .
Normaliz found 1 fundamental ho l e s .
Looking at ho le [1 1]
>>>>> Running Normaliz to f i n d the minimal s o l u t i o n s to f = Am − Al .
>>>>> Running M2 to compute the standard p a i r s . Output :

1 : {x0}

2.3 Frobenius Revisited

Let’s now turn to the Frobenius problem. We will start with a very small example to nicely interpret
the output. With the notation of Example 2.1, we set p = 3 and q = 5. Our input file frobenius.mat
should look like:

2 2
3 5
0 0

For technical reasons, we had to embed the problem into R2. The output is now:

Using temporary d i r e c t o r y /tmp/tmp6qedfn44/
Read f r o b e n i u s . mat . 2 gene ra to r s in dimension 2 .
>>>>> Running normal iz to compute the fundamental ho l e s .
Normaliz found 2 fundamental ho l e s .
Looking at ho le [1 0]
>>>>> Running z s o l v e to f i n d the minimal s o l u t i o n s to f = Am − Al .
>>>>> Running M2 to compute the standard p a i r s . Output :

1 : {}
x0 : {}

2
x0 : {}

Looking at ho le [2 0]
>>>>> Running z s o l v e to f i n d the minimal s o l u t i o n s to f = Am − Al .
>>>>> Running M2 to compute the standard p a i r s . Output :

3

1 : {}
x1 : {}

There are only two fundamental holes, but there are several standard pairs. The x′is in the output
refer to the (i− 1)st generator. For the hole (1, 0) this simply means, we have the holes (1, 0), then the
hole (1, 0) + (3, 0) and (1, 0) + 2 · (3, 0) . Moreover, we have the holes with base point (2, 0), namely
(2, 0) and (2, 0) + (5, 0). Note that the list of holes is redundant, as the hole (7, 0) appears with two
different base points. In general, i.e. in higher dimensions, we cannot expect a finite set of holes, so
based on every hole there will be a monoid. This monoid is trivial in our case, which explains the
empty brackets after the variables.

2.4 A Bigger Example

Now let us turn to a more complex problem. Let A ∈ Z9×16 be the matrix that fixes the row-, and
column sums and that fixes the diagonal of a given 4× 4 matrix, i.e.

A =



1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0
0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0
0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0
0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1
1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 1 1 1 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1
1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1


.

Let us determine the holes of the semigroup generated by the columns of A. We have to save the
matrix A in the file 44.mat:

9 16
1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0
0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0
0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0
0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1
1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 1 1 1 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1
1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1

Now we can run our program with the following command:

python3 hase . py −−normal iz ” . / normal iz ” −v 44

The output will be:

Normaliz found 6 fundamental ho l e s .
Standard p a i r s o f [0 0 1 1 0 0 1 1 1] :

1 : {x10 , x11 , x14 , x15}
1 : {x0 , x5 , x10 , x15}

Standard p a i r s o f [0 1 0 1 0 1 0 1 1] :
1 : {x5 , x7 , x13 , x15}
1 : {x0 , x5 , x10 , x15}

4

Standard p a i r s o f [0 1 1 0 0 1 1 0 1] :
1 : {x5 , x6 , x9 , x10}
1 : {x0 , x5 , x10 , x15}

Standard p a i r s o f [1 0 0 1 1 0 0 1 1] :
1 : {x0 , x5 , x10 , x15}
1 : {x0 , x3 , x12 , x15}

Standard p a i r s o f [1 0 1 0 1 0 1 0 1] :
1 : {x0 , x5 , x10 , x15}
1 : {x0 , x2 , x8 , x10}

Standard p a i r s o f [1 1 0 0 1 1 0 0 1] :
1 : {x0 , x5 , x10 , x15}
1 : {x0 , x1 , x4 , x5}

For more about the fundamental holes of Q(A) and an explicit description of the Hilbert basis of Q(A),
see [Kohl et al., 2016].

3 More Options

In this section, we want to give a very brief overview over the different options. Enter

python3 hase . py −−normal iz ” . / normal iz ” −−help

in your terminal to see all possible flags.

usage : hase . py [−h] [−k] [−−M2 M2] [−−normal iz NORMALIZ]
[−− z s o l v e ZSOLVE] [− t] [−−time]
[−− l p s o l v e LP SOLVE] [−v]
f i l ename

Compute the ho le monoids o f an a f f i n e semigroup .

p o s i t i o n a l arguments :
f i l ename the name o f the f i l e conta in ing the generator s ,

without the ending ” . mat” (as columns o f a matrix , in
4 t i 2 . mat format)

op t i on a l arguments :
−h , −−help show t h i s he lp message and e x i t
−k , −−keep−temporary− f i l e s

with t h i s option , temporary f i l e s are c r ea ted in the
same d i r e c t o r y (us ing FILENAME−him as a basename) and
are not de l e t ed when the program f i n i s h e s . Note that
the temporary f i l e s f o r d i f f e r e n t fundamental ho l e s
get the same name , so only the temporary f i l e s used
when computing the monoid o f the l a s t fundamental ho l e
are prese rved .

−−M2 M2 the command to c a l l Macaulay2 (i n c l u d i n g the path)
−−normal iz NORMALIZ the command to c a l l normal iz (i n c l u d i n g the path)
−−z s o l v e ZSOLVE the command to c a l l z s o l v e (i n c l u d i n g the path)
−−Nsolve the command to use Nsolve in s t ead o f z s o l v e (i n c l u d i n g path)
−t , −−t r i c k f o r each fundamental ho l e f and generato r g , check i f

f+g i s a ho le . Only compute the ho le monoid among the
remaining gene ra to r s .

−−time time each z s o l v e command
−− l p s o l v e LP SOLVE the command to c a l l l p s o l v e (i n c l u d i n g the path)

5

−v , −−verbose i n c r e a s e output v e r b o s i t y . Use s e v e r a l t imes (”−vv ”)
to f u r t h e r i n c r e a s e output v e r b o s i t y

References

4ti2 team. 4ti2—a software package for algebraic, geometric and combinatorial problems on linear
spaces. Available at www.4ti2.de, 2008.

Matthias Beck and Sinai Robins. Computing the Continuous Discretely. Undergraduate Texts in
Mathematics. Springer, New York, 2007. ISBN 978-0-387-29139-0; 0-387-29139-3. Integer-point
enumeration in polyhedra.

W. Bruns, B. Ichim, T. Roemer, R. Sieg, and C. Soeger. Normaliz. algorithms for rational cones and
affine monoids. Available at https://www.normaliz.uni-osnabrueck.de.

Daniel R. Grayson and Michael E. Stillman. Macaulay2, a software system for research in algebraic
geometry. Available at http://www.math.uiuc.edu/Macaulay2/.

R. Hemmecke, A. Takemura, and R. Yoshida. Computing holes in semi-groups and its applications to
transportation problems. Contributions to Discrete Mathematics, 4(1):81 – 91, 2009.

Florian Kohl, Yanxi Li, Johannes Rauh, and Ruriko Yoshida. Semigroups — a computational approach.
preprint, 2016. URL http://arxiv.org/abs/1608.03297.

A. Takemura and R. Yoshida. A generalization of the integer linear infeasibility problem. Discrete
Optimization, 5(1):36–52, 2008.

6

