AG+ Fall School

Greg Blekherman

Let \mathbb{S}^n_+ denote the set of $n \times n$ real symmetric positive semidefinite (PSD) matrices in the vector space \mathbb{S}^n of $n \times n$ real symmetric matrices. The vector space \mathbb{S}^n is equipped with the inner product $\langle A, B \rangle = \text{trace } AB$.

Structure of \mathbb{S}^n_+ :

- 1. Show the following:
 - (1) \mathbb{S}^n_+ is a convex cone in \mathbb{S}^n .
 - (2) The extreme rays of \mathbb{S}^n_+ are precisely the rank 1 PSD matrices.
 - (3) Let L be a linear subspace of \mathbb{R}^n and denote by \mathcal{F}_L the subcone of \mathbb{S}^n_+ consisting of matrices whose kernel contains L. Then any face F of \mathbb{S}^n_+ is equal to \mathcal{F}_L for some L.

Conic Duality:

To a convex cone $C \subset \mathbb{S}^n$ we associate the dual cone C^* defined by:

 $C^* = \{ A \in \mathbb{S}^n \mid \langle A, B \rangle \ge 0 \text{ for all } B \in C \}.$

Important Fact: if C is a closed cone then $(C^*)^* = C$. This is called the bi-duality theorem.

- 2. Show the following:
 - (1) \mathbb{S}^n_+ is self-dual, i.e. $(\mathbb{S}^n_+)^* = \mathbb{S}^n_+$.
 - (2) For a simple graph G on n vertices, let L(G) denote the subspace of \mathbb{S}^n consisting of matrices where entries corresponding to non-edges of G are zero. Let $\Sigma(G)$ be the orthogonal projection of \mathbb{S}^n_+ onto L(G). Show that

$$\Sigma(G)^* = L(G) \cap \mathbb{S}^n_+.$$

- (3) Duality reverses inclusion: If $A \subseteq B$ then $B^* \subseteq A^*$.
- (4) Show that the dual cone P(G)* of P(G) is equal to the conical hull of rank 1 PSD matrices in L(G). Compare this dual cone with the cone Σ(G)* from above. Formulate what the equality of P(G) and Σ(G) implies for the dual cones P(G)* and Σ(G)*.

Chordal graph theorem.

3. Let I be a square-free quadratic monomial ideal in $\mathbb{R}[x_1, \ldots, x_n]$, and let G be the graph on n vertices where monomials of I are the non-edges of G. Show that the variety defined by I is a union of coordinate linear spaces corresponding to maximal cliques of G. Let C_n denote the cycle on n vertices.

4. Show that $\Sigma(C_n) \subsetneq P(C_n)$. Conclude that if G is not chordal then $\Sigma(G) \subsetneq P(G)$. Hint: one possible approach is to consider the dual statement and use Exercise 2 above.

5. Show the following alternative characterization of chordal graphs: G is chordal if and only if it is a *clique sum* of complete graphs. It suffices to show that if G is chordal, then there a vertex of G whose neighbors form a complete graph.

6. Show that if $\Sigma(G_1) = P(G_1)$ and $\Sigma(G_2) = P(G_2)$ then $\Sigma(G) = P(G)$, where G is a clique sum of G_1 and G_2 .

Nonnegative Polynomials and Sums of Squares:

Let $\mathbb{R}[x]_d$ be the vector space of real homogeneous polynomials (forms) in *n* variables of degree *d*.

7. For a polynomial $p(x_1, \ldots, x_n)$ in *n* variables of degree *d*, define homogenization \bar{p} of *p* with respect to a new variable x_0 to be

$$\bar{p}(x_0,\ldots,x_n) = x_0^d p\left(\frac{x_1}{x_0},\ldots,\frac{x_n}{x_0}\right).$$

For example, homogenization of $x_1 + x_2^2$ is $x_0x_1 + x_2^2$ and homogenization of $x_1^3 - x_1x_2 + 3$ is $x_1^3 - x_0x_1x_2 + 3x_0^3$. Show that if a polynomial p is nonnegative then its homogenization is nonnegative as well. Does the same hold for strictly positive polynomials?

8. The Newton Polytope N_p of a polynomial p is the convex hull of the vectors of monomial exponents that occur in p. For example, the Newton Polytope of $x^2 + xy + z^2$ is the convex hull of vectors (2, 0, 0), (1, 1, 0) and (0, 0, 2).

Show that if a polynomial $p = \sum_{i} q_i^2$ is a sum of squares then the Newton Polytope of each q_i is contained in $\frac{1}{2}N_p$.

9. Use Exercise 8 to show that the Motzkin polynomial $M = x^4y^2 + x^2y^4 + 1 - 3x^2y^2$ is not a sum of squares.

10. (Another perspective on Motzkin's construction). Let $\varphi : \mathbb{P}^2 \to \mathbb{P}^3$ be the map sending [x:y:z] to $[x^2y:xy^2:z^3:xyz]$. Let $X \subset \mathbb{P}^3$ be (Zariski closure of) the image of φ .

- (1) Show that X is a cubic hypersurface in \mathbb{P}^3 . Conclude that $\Sigma_X \subsetneq P_X$.
- (2) Use Exercise 8 and part (1) to show that there exist ternary sextics that are not sums of squares.

11. (Choi-Lam) Show that the form $S(x, y, z) = x^4y^2 + y^4z^2 + z^4x^2 - 3x^2y^2z^2$ is nonnegative but not a sum of squares.

12. Show that the maximal faces of $P_{n,2d}$ (with respect to inclusion) have the form

$$F_v = \{ f \in P_{n,2d} \mid f(v) = 0 \text{ for some } v \in \mathbb{R}^n \}.$$

Show that the faces F_v have codimension n. Compare with Exercise 1 above.

13. Let $K \subset \mathbb{R}^n$ be a compact convex set with the origin not in K. Show that the conical hull of K, cone(K) is closed. Construct an explicit example that shows that the condition $0 \notin K$ is necessary.

14. Show that $P_{n,2d}$ and $\Sigma_{n,2d}$ are closed full-dimensional cones with no lines in $\mathbb{R}[x]_{2d}$. (Hint: Use Exercise 13 for closure of $\Sigma_{n,2d}$).

15. Show that a univariate nonnegative polynomial is a sum of at most 2 squares. What can be said about polynomials nonnegative on an interval (not necessarily bounded)?

Quadratic Persistence and Pythagoras Number.

16. Let X be a projective variety, with vanishing graded ideal I = I(X). Let v be a point of X and X_v be the projection of X away from v. Show that

$$\dim I(X_2) - \dim I(X_v)_2 \le \operatorname{codim} X,$$

i.e. if we project away from a point the ideal loses at most codim X quadrics.

17. Using notation of Exercise 16 and v a real point of X, show that

$$P_{X_v} \subset P_X(v).$$

18. Show the following upper bound on Pythagoras number of a variety X (not necessarily irreducible):

$$\binom{\Pi(X)+1}{2} \le \dim R_2.$$

19. Determine quadratic persistence of a toric variety corresponding to $a \times b$ lattice box.

20. Determine quadratic persistence of Veronese embeddings of \mathbb{P}^n .

Duaiity and Moment Problems.

21. Write down a semidefinite program for showing that $5+6x-4x^2-4x^3+2x^4$ is nonnegative on \mathbb{R} . Solve it without using an SDP solver.

22. Let $C = L \cap \mathbb{S}^n_+$ be a spectrahedral cone. Show that A spans an extreme ray of C if and only if ker A is maximal (by inclusion) among all matrices in L. More precisely if $B \in L$ and ker $A \subseteq \ker B$ then $B = \lambda A$ for some $\lambda \in \mathbb{R}$.

23. Let X be a projective variety. For $\ell \in \Sigma_X^*$ the kernel W of the associated quadratic form Q_ℓ is a subspace of linear forms in R_1 , whose vanishing defines a linear subspace V, Use exercise 22 to show that if ℓ spans an extreme ray of \mathbb{S}^n_+ then $V \cap X(\mathbb{C}) = \emptyset$. Conclude that $\dim W \ge \dim X + 1$.

24. Let X be a variety of minimal degree. Then it is known that X is arithmetically Cohen-Macaulay and dim $R_2 = \binom{\operatorname{codim} X+1}{2}$. Use these facts and Exercise 23 to show that $\Sigma_X^* = P_X^*$ and therefore $\Sigma_X = P_X$.

25. Let $\mathbb{R}[x]_{\leq d}$ denote the vector space of univariate polynomials of degree at most d. Describe all linear functionals $\ell \in \mathbb{R}[x]_{\leq 4}^*$ with positive semidefinite moment matrix, but no representing measure.