
AG+ Fall School

Greg Blekherman

Let Sn
+ denote the set of n×n real symmetric positive semidefinite (PSD) matrices in the

vector space Sn of n× n real symmetric matrices. The vector space Sn is equipped with the
inner product 〈A,B〉 = traceAB.

Structure of Sn
+:

1. Show the following:

(1) Sn
+ is a convex cone in Sn.

(2) The extreme rays of Sn
+ are precisely the rank 1 PSD matrices.

(3) Let L be a linear subspace of Rn and denote by FL the subcone of Sn
+ consisting of

matrices whose kernel contains L. Then any face F of Sn
+ is equal to FL for some L.

Conic Duality:

To a convex cone C ⊂ Sn we associate the dual cone C∗ defined by:

C∗ = {A ∈ Sn | 〈A,B〉 ≥ 0 for all B ∈ C}.
Important Fact: if C is a closed cone then (C∗)∗ = C. This is called the bi-duality theorem.

2. Show the following:

(1) Sn
+ is self-dual, i.e. (Sn

+)∗ = Sn
+.

(2) For a simple graph G on n vertices, let L(G) denote the subspace of Sn consisting of
matrices where entries corresponding to non-edges of G are zero. Let Σ(G) be the
orthogonal projection of Sn

+ onto L(G). Show that

Σ(G)∗ = L(G) ∩ Sn
+.

(3) Duality reverses inclusion: If A ⊆ B then B∗ ⊆ A∗.

(4) Show that the dual cone P (G)∗ of P (G) is equal to the conical hull of rank 1 PSD
matrices in L(G). Compare this dual cone with the cone Σ(G)∗ from above. For-
mulate what the equality of P (G) and Σ(G) implies for the dual cones P (G)∗ and
Σ(G)∗.

Chordal graph theorem.

3. Let I be a square-free quadratic monomial ideal in R[x1, . . . , xn], and let G be the graph
on n vertices where monomials of I are the non-edges of G. Show that the variety defined
by I is a union of coordinate linear spaces corresponding to maximal cliques of G.
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Let Cn denote the cycle on n vertices.

4. Show that Σ(Cn) ( P (Cn). Conclude that if G is not chordal then Σ(G) ( P (G). Hint:
one possible approach is to consider the dual statement and use Exercise 2 above.

5. Show the following alternative characterization of chordal graphs: G is chordal if and
only if it is a clique sum of complete graphs. It suffices to show that if G is chordal, then
there a vertex of G whose neighbors form a complete graph.

6. Show that if Σ(G1) = P (G1) and Σ(G2) = P (G2) then Σ(G) = P (G), where G is a clique
sum of G1 and G2.

Nonnegative Polynomials and Sums of Squares:

Let R[x]d be the vector space of real homogeneous polynomials (forms) in n variables of
degree d.

7. For a polynomial p(x1, . . . , xn) in n variables of degree d, define homogenization p̄ of p
with respect to a new variable x0 to be

p̄(x0, . . . , xn) = xd0 p

(
x1
x0
, . . . ,

xn
x0

)
.

For example, homogenization of x1 + x22 is x0x1 + x22 and homogenization of x31 − x1x2 + 3
is x31 − x0x1x2 + 3x30. Show that if a polynomial p is nonnegative then its homogenization is
nonnegative as well. Does the same hold for strictly positive polynomials?

8. The Newton Polytope Np of a polynomial p is the convex hull of the vectors of monomial
exponents that occur in p. For example, the Newton Polytope of x2 + xy + z2 is the convex
hull of vectors (2, 0, 0), (1, 1, 0) and (0, 0, 2).

Show that if a polynomial p =
∑

i q
2
i is a sum of squares then the Newton Polytope of

each qi is contained in 1
2
Np.

9. Use Exercise 8 to show that the Motzkin polynomial M = x4y2 + x2y4 + 1− 3x2y2 is not
a sum of squares.

10. (Another perspective on Motzkin’s construction). Let ϕ : P2 → P3 be the map sending
[x : y : z] to [x2y : xy2 : z3 : xyz]. Let X ⊂ P3 be (Zariski closure of) the image of ϕ.

(1) Show that X is a cubic hypersurface in P3. Conclude that ΣX ( PX .
(2) Use Exercise 8 and part (1) to show that there exist ternary sextics that are not sums

of squares.

11. (Choi-Lam) Show that the form S(x, y, z) = x4y2 + y4z2 + z4x2− 3x2y2z2 is nonnegative
but not a sum of squares.

12. Show that the maximal faces of Pn,2d (with respect to inclusion) have the form

Fv = {f ∈ Pn,2d | f(v) = 0 for some v ∈ Rn}.
Show that the faces Fv have codimension n. Compare with Exercise 1 above.
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13. Let K ⊂ Rn be a compact convex set with the origin not in K. Show that the conical
hull of K, cone(K) is closed. Construct an explicit example that shows that the condition
0 /∈ K is necessary.

14. Show that Pn,2d and Σn,2d are closed full-dimensional cones with no lines in R[x]2d. (Hint:
Use Exercise 13 for closure of Σn,2d).

15. Show that a univariate nonnegative polynomial is a sum of at most 2 squares. What
can be said about polynomials nonnegative on an interval (not necessarily bounded)?

Quadratic Persistence and Pythagoras Number.

16. Let X be a projective variety, with vanishing graded ideal I = I(X). Let v be a point
of X and Xv be the projection of X away from v. Show that

dim I(X2)− dim I(Xv)2 ≤ codimX,

i.e. if we project away from a point the ideal loses at most codimX quadrics.

17. Using notation of Exercise 16 and v a real point of X, show that

PXv ⊂ PX(v).

18. Show the following upper bound on Pythagoras number of a variety X (not necessarily

irreducible): (
Π(X) + 1

2

)
≤ dimR2.

19. Determine quadratic persistence of a toric variety corresponding to a× b lattice box.

20. Determine quadratic persistence of Veronese embeddings of Pn.

Duaiity and Moment Problems.

21. Write down a semidefinite program for showing that 5+6x−4x2−4x3+2x4 is nonnegative
on R. Solve it without using an SDP solver.

22. Let C = L∩ Sn
+ be a spectrahedral cone. Show that A spans an extreme ray of C if and

only if kerA is maximal (by inclusion) among all matrices in L. More precisely if B ∈ L and
kerA ⊆ kerB then B = λA for some λ ∈ R.

23. Let X be a projective variety. For ` ∈ Σ∗
X the kernel W of the associated quadratic

form Q` is a subspace of linear forms in R1, whose vanishing defines a linear subspace V ,
Use exercise 22 to show that if ` spans an extreme ray of Sn

+ then V ∩X(C) = ∅. Conclude
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that dimW ≥ dimX + 1.

24. Let X be a variety of minimal degree. Then it is known that X is arithmetically Cohen-
Macaulay and dimR2 =

(
codimX+1

2

)
. Use these facts and Exercise 23 to show that Σ∗

X = P ∗
X

and therefore ΣX = PX .

25. Let R[x]≤d denote the vector space of univariate polynomials of degree at most d.
Describe all linear functionals ` ∈ R[x]∗≤4 with positive semidefinite moment matrix, but no
representing measure.
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