Fall School, Algebraic Geometry, Varieties, Polyhedra and Computation September 30th-October 4th, 2019, Berlin Mathematics Research Center

Exercise Sheet - Tensor Rank and Complexity - Giorgio Ottaviani

Exercise 1. A tensor $t \in \mathbb{C}^a \otimes \mathbb{C}^b \otimes \mathbb{C}^c$ defines three contractions

$$\begin{split} (\mathbb{C}^a)^{\vee} &\to \mathbb{C}^b \otimes \mathbb{C}^c \\ (\mathbb{C}^b)^{\vee} &\to \mathbb{C}^a \otimes \mathbb{C}^c \\ (\mathbb{C}^c)^{\vee} &\to \mathbb{C}^a \otimes \mathbb{C}^b \end{split}$$

and we call their ranks respectively $r_1(t)$, $r_2(t)$, $r_3(t)$, they are called multilinear ranks.

• (a) Prove that

$$\operatorname{rk}(t) = 1 \iff \begin{cases} r_1(t) = 1\\ r_2(t) = 1\\ r_3(t) = 1 \end{cases}$$

- (b) Prove that $(r_1, r_2, r_3) = (1, 2, 2)$ is admissible, while $(r_1, r_2, r_3) = (1, 1, 2)$ is not allowed.
- (c) Prove that $r_i \leq \operatorname{brk}(t) \leq \operatorname{rk}(t) \leq r_j r_k \ \forall i, j, k$ (brk is the border rank).
- (d) Deduce that $r_1 \leq r_2 r_3, r_2 \leq r_1 r_3, r_3 \leq r_1 r_2$.

Exercise 2. (Geometric version) Let A, B, C be three complex vector spaces of dimension two.

- a)Prove that, in the language of Exercise 1, the only admissible triples for (r_1, r_2, r_3) are (1, 1, 1), (1, 2, 2), (2, 1, 2), (2, 2, 1), (2, 2, 2).
- b) In the matrix space P(C² ⊗ C²) the variety of matrices of rank one is a smooth quadric surface Q. Interpretate the three contractions (C²)[∨] → C² ⊗ C² as three pencils of matrices P¹ → P(C² ⊗ C²) and characterize them depending on the intersection of the pencil with Q, according to each admissible triple. For example in the case (1,1,1) the contraction maps P¹ → P(C² ⊗ C²) are degenerate, the image collapse to a single point contained in Q. In the case (1,2,2) there are two contraction maps where the image is a line all contained in Q. Go ahead with a complete description of all cases.
- c)Prove that the cases (1,1,1), (1,2,2), (2,1,2), (2,2,1) correspond to a unique orbit, while the case (2,2,2) splits into two orbits.*Hint: the pencil may be transversal or tangent* to Q.
- d) Describe the graph of the six orbits in P(C² ⊗ C² ⊗ C²) and the graph of the seven orbits in C² ⊗ C² ⊗ C² (they include the zero orbit). A reference is [GKZ, Example 14.4.5].

Exercise 2'. (This is the Algebraic Version of Exercise 2, both languages are useful) Let A, B, C be three vector spaces of dimension two, with basis respectively given by $\{a_0, a_1\}, \{b_0, b_1\}, \{c_0, c_1\}$.

- (1) For any tensor $t = \sum_{i,j,k=0,\dots,1} t_{ijk} a_i b_j c_k$, write it as a 2 × 2 with coefficients linear in c_i , so as a *pencil* of 2 × 2 matrices.
- (2) Compute the condition that the previous matrix is singular, it is a quadratic equation in c_i giving a pair of points.
- (3) Compute the condition that the previous pair of points consists of a double point, get a polynomial of degree 4 in t_{ijk} , which is called the hyperdeterminant of t and we denote as Det(t). It corresponds to a pencil tangent to Q, in the geometric language of Exercise 2.
- (4) Show that the above pair gives the two summands of t, when t has rank two. Prove that in the dense orbit, over \mathbb{C} , there is a unique decomposition as a sum of two decomposable tensors (this was the main result by C. Segre).
- (5) In the real case, prove that the sign of Det(t) allows to detect if a real $2 \times 2 \times 2$ tensor has rank 2 or 3.
- (6) Prove that w = a₀b₀c₁ + a₀b₁c₀ + a₁b₀c₀ has (complex) rank 3. This is called a W-state in Quantum Information Theory. Write infinitely many decompositions of w as the sum of three decomposable tensors. *Hint: in the last summand you could modify with* (a₀ sin θ + a₁ cos θ)(b₀ cos θ + b₁ sin θ)c₀
- (7) Prove that $a_0b_0c_0 + a_0b_1c_1$ has infinitely many decompositions. Which are its multilinear ranks (r_1, r_2, r_3) ? *Hint: in the first summand you could modify with* $a_0(b_0 \cos \theta + b_1 \sin \theta)(c_0 \cos \theta + c_1 \sin \theta)$

Exercise 3.

(a) The following $2 \times 2 \times 2$ tensors t_1 , t_2 , t_3 fill the first column of the following table. Which is which ? Can you decompose them ?

t	$\operatorname{rk}_{\mathbb{R}}(t)$	$\operatorname{rk}_{\mathbb{C}}(t)$
?	2	2
?	3	2
?	3	3

 $t_1 = 4a_0b_0c_0 + 2a_1b_0c_0 - a_0b_1c_0 + 2a_0b_0c_1$

 $t_2 = a_0 b_0 c_0 + 2a_1 b_1 c_0 + 3a_1 b_0 c_1 + 6a_0 b_1 c_1$

 $t_3 = a_0 b_0 c_0 - 2a_1 b_1 c_0 - 3a_1 b_0 c_1 - 6a_0 b_1 c_1$

• (b)Write down the finite number of orbits for the action of $GL(2,\mathbb{R}) \times GL(2,\mathbb{R}) \times GL(2,\mathbb{R})$ on $\mathbb{R}^2 \otimes \mathbb{R}^2 \otimes \mathbb{R}^2$.

Exercise 4. (Harder) In [L, Theorem 10.10.2.6] it is reported that the maximal rank for tensors in $\mathbb{C}^2 \otimes \mathbb{C}^2 \otimes \mathbb{C}^2 \otimes \mathbb{C}^2$ is 4. The proof by Brylinski examines the rank of the map $\mathbb{P}^1 \to \mathbb{P}(\mathbb{C}^2 \otimes \mathbb{C}^2 \otimes \mathbb{C}^2)$. Try to repeat the argument for tensors in $\mathbb{R}^2 \otimes \mathbb{R}^2 \otimes \mathbb{R}^2 \otimes \mathbb{R}^2$ by using Exercise 3.

Exercise 5. (Harder) A rank in real tensor space is called typical if it is attained in a set with nonempty interior (equivalently, with positive volume). It is known that the typical ranks of $\mathbb{R}^2 \otimes \mathbb{R}^2 \otimes \mathbb{R}^2$ are 2 and 3.

What are the typical ranks for $\mathbb{R}^2 \otimes \mathbb{R}^2 \otimes \mathbb{R}^2 \otimes \mathbb{R}^2$?

References

- [GKZ] I.M. Gelfand, M.M. Kapranov, and A.V. Zelevinsky: Discriminants, Resultants and Multidimensional Determinants, Birkhäuser, Boston, 1994.
- [L] J. M. Landsberg, Tensors: Geometry and Applications, AMS, Providence, 2012.