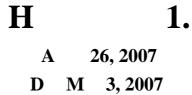
FU"BInstitut für MathematikBenjamin NillChristian Haase

1.

2.



E

Suppose the simplicial complex Δ is a cone with apex 0. I.e., $\sigma \in \Delta \Leftrightarrow \sigma \cup \{0\} \in \Delta$. Define the coning map $D: C_k(\Delta) \to C_{k+1}(\Delta)$ by

$$[i_0 < \dots < i_k] \mapsto \begin{cases} 0 & \text{if } i_0 = 0\\ [0 < i_0 < \dots < i_k] & \text{if } i_0 > 0 \end{cases}$$

Show that $\partial D + D\partial = id$. Deduce that cones have trivial homology.

Ε

Let Δ be the boundary of the octahedron.

- (a) Determine I_{Δ} and I_{Δ}^{\star} .
- (b) Compute their respective coarse Hilbert series.
- (c) Compute the minimal free resolution of I_{Δ} .
- (d) Compare (b) and (c). Guess the ranks of a minimal free resolution of I_{Λ}^{\star} .
- (e)^{*} Compute the minimal free resolution of I_{Δ}^{\star} .

Е

J.

Given a simplicial complex Δ , construct a monomial ideal *I* and a degree $\mathbf{b} \in \mathbb{N}^n$ so that $\Delta = K^{\mathbf{b}}(I)$ is the upper Koszul simplicial complex of *I* in degree **b**. Is your ideal squarefree?

E

4.

Suppose that ϕ is a nonminimal \mathbb{N}^n -graded homomorphism of free modules. Show that ϕ can be represented by a block diagonal monomial matrix in which one of the blocks is a nonzero 1×1 matrix with equal row and column labels.