Freie Universität Berlin
Institut für Mathematik

Benjamin Nill
Christian Haase

Homework 2.

May 3, 2007
Due May 10, 2007

Exercise 1.

Let I be a monomial ideal, and suppose that $\mathbf{x}^{\mathbf{b}}$ is not the least common multiple of some subset of the minimal monomial generators of I. Argue that $K^{\mathbf{b}}(I)$ is a cone. (See Exercise 1.1.)

Deduce that nonzero Betti numbers only occur in degrees $\mathbf{b} \in \mathbb{N}^{n}$ for which $\mathbf{x}^{\mathbf{b}}$ is a least common multiple of some subset of the minimal generators.

Exercise 2.

Let Δ be the following simplicial complex.

(a) Determine Δ^{\star}, and the links of all its vertices.
(b) Read off the Betti numbers $\beta_{i, \mathbf{b}}\left(I_{\Delta}\right)$ for $|\mathbf{b}| \leq 1$.
(c)* Compute as many Betti numbers of I_{Δ} as possible.

Exercise 3.

An ideal $I \subseteq S$ is called irreducible if $I=J \cap J^{\prime}$ for ideals J, J^{\prime} implies $I \in\left\{J, J^{\prime}\right\}$. Identify the irreducible monomial ideals in $S=\mathbb{k}\left[x_{1}, x_{2}\right] \quad$ (in $S=\mathbb{k}\left[x_{1}, \ldots, x_{n}\right]$).

Exercise 4.

Draw the Buchberger graph of the monomial ideal whose staircase surface is depicted below.

