F
 U
 B
 KOMBINATORISCHE KOMMUTATIVE ALGEBRA

 Institut für Mathematik
 Sommersemester 2007

 Benjamin Nill
 Christian Haase

 H
 2.

 M
 3, 2007

D M 10, 2007

E 1.

Let *I* be a monomial ideal, and suppose that $\mathbf{x}^{\mathbf{b}}$ is *not* the least common multiple of some subset of the minimal monomial generators of *I*. Argue that $K^{\mathbf{b}}(I)$ is a cone. (See Exercise 1.1.)

Deduce that nonzero Betti numbers only occur in degrees $\mathbf{b} \in \mathbb{N}^n$ for which $\mathbf{x}^{\mathbf{b}}$ is a least common multiple of some subset of the minimal generators.

E 2.

Let Δ be the following simplicial complex.

- (a) Determine Δ^* , and the links of all its vertices.
- (b) Read off the Betti numbers $\beta_{i,\mathbf{b}}(I_{\Delta})$ for $|\mathbf{b}| \leq 1$.
- (c)^{*} Compute as many Betti numbers of I_{Δ} as possible.

E	3.
---	----

An ideal $I \subseteq S$ is called irreducible if $I = J \cap J'$ for ideals J, J' implies $I \in \{J, J'\}$. Identify the irreducible monomial ideals in $S = \Bbbk[x_1, x_2]$ (in $S = \Bbbk[x_1, \dots, x_n]$).

E 4.

Draw the Buchberger graph of the monomial ideal whose staircase surface is depicted below.

