FU" BInstitut für MathematikBenjamin NillChristian Haase

H 3. M 10, 2007 D M 18, 2007

E

_ φ

1.

Suppose $F \xleftarrow{\phi} F'$ is homogeneous between \mathbb{N}^n -graded free *S*-modules. Show that ker ϕ , im ϕ , coker ϕ are all \mathbb{N}^n -graded.

Deduce that a sequence $0 \leftarrow F_0 \xleftarrow{\phi_1} F_1 \xleftarrow{\phi_2} \cdots$ of such morphisms is a complex/exact if and only if for every degree $\mathbf{b} \in N^n$ the induced sequence of vector spaces $0 \leftarrow F_{0\mathbf{b}} \leftarrow F_{1\mathbf{b}} \leftarrow \cdots$ is a complex/exact.

For the following exercises, let $I = \langle m_1, \dots, m_r \rangle \subseteq S = \Bbbk[x, y, z]$ be a strongly generic Artinian monomial ideal with Buchberger graph Buch(*I*) and staircase surface stair(*I*).

E 2.

Show that (i, j) is an edge in Buch(I) if and only if $lcm(m_i, m_j) \in stair(I)$. So the edges can be embedded in stair(I): one segment from m_i to $lcm(m_i, m_j)$ and one segment from m_j to $lcm(m_i, m_j)$.

E 3.

Show that edges of Buch(I) when drawn according to the previous exercise, intersect at most in their end points. I.e., the embedding is a planar map.

E 4.

Show that the faces of the above embedding are precisely the triangles (i, j, k) such that $lcm(m_i, m_j, m_k) \in stair(I)$.