FREIE UNIVERSITÄT BERLIN Institut für Mathematik Benjamin Nill Christian Haase

HOMEWORK 7.

JUNE 7, 2007 DUE JUNE 14, 2007

Exercise 1.

Dualize the hull resolution from exercise 5.3 to describe a free resolution of the ideal

 $I = \langle x^3, y^4, z^4 \rangle \cap \langle x, y^2, z \rangle \cap \langle x^3, z^2 \rangle \cap \langle y^3, z^2 \rangle \cap \langle x^4, y^3 \rangle \cap \langle x^3, y^4 \rangle \,.$

Exercise 2.

In the context of the previous exercise, illustrate the objects from the proof of the resolution duality theorem for $\mathbf{b} = (4, 4, 1)$: identify the U_i and their nerve \mathcal{N} .

EXERCISE 3.

Let $a, b \in \mathbb{Z}^2$ linearly independent. Prove that a, b is a lattice basis of \mathbb{Z}^2 , if 0, a, b are the only lattice points in the triangle with vertices 0, a, b.

(*Hint:* Why are there also in the parallelogram with vertices 0, a, b, a + b no lattice points except the four vertices?)

Exercise 4.

Say a matrix is *integral*, if all entries are in \mathbb{Z} . Let $GL_n(\mathbb{Z})$ be the set of integral $n \times n$ -matrices *G* that are *invertible*, i.e., there is an integral $n \times n$ -matrix *G'* such that GG' = id. Show that an integral $n \times n$ -matrix *G* is invertible if and only if the determinant is ± 1 .

(Hint: Use a well-known Linear Algebra formula for the adjoint matrix.)

Extrablatt: Nerve Lemma (optional)

EXERCISE 1.

Suppose $X = X' \cup X''$ are simplicial complexes. Show that there is a short exact sequence of cochain complexes

$$0 \longleftarrow C^{\bullet}(X' \cap X'') \longleftarrow C^{\bullet}(X') \oplus C^{\bullet}(X'') \longleftarrow C^{\bullet}(X) \longleftarrow 0$$

Exercise 2.

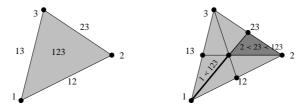
Suppose *X* and *X'* are simplicial complexes on vertex sets [n] and [n'], respectively. A map $\phi: [n] \to [n']$ is simplicial $X \to X'$ if $\phi(\sigma) \in X'$ for all $\sigma \in X$.

Show that the induced linear maps $\phi^k \colon C^k(X') \to C^k(X)$ are cochain maps, i.e., $\delta \phi = \phi \delta$. Conclude that there are induced homomorphisms $\phi^* \colon \widetilde{H}^k(X') \to \widetilde{H}^k(X)$.

Exercise 3.

The barycentric subdivision of a simplicial complex X is a simplicial complex bsd(X) on the vertex X whose simplicies are the chains:

 $\{\sigma_1, \ldots, \sigma_r\} \in bsd(X)$ if and only if $\sigma_1 < \ldots < \sigma_r$ (after reindexing if necessary).



Let $X = \bigcup_{i=1}^{N} X_i$ be simplicial complexes on [n], and denote the nerve by $\mathcal{N} = \{I \subset [N] : \bigcap_{i \in I} X_i \neq \emptyset\}.$

Show that the map $\sigma \mapsto \min \{ i : \sigma \in X_i \}$ is simplicial $bsd(X) \to \mathcal{N}$.

EXERCISE 4.

Let $X = \bigcup_{i=1}^{N} X_i$ be simplicial complexes on [n], so that $\widetilde{H}^k(\bigcap_{i \in I} X_i) = 0$ for $k \ge 0$ and all $I \subseteq [N]$. Denote the nerve by \mathcal{N} . Set $X' := \bigcup_{i=1}^{N-1} X_i$ with nerve \mathcal{N}' , and $Y := X' \cap X_N = \bigcup_{i=1}^{N-1} X_i \cap X_N$ with nerve \mathcal{N}_0 .

Show that there are commutative diagrams with exact rows

Use induction on *N* to deduce that $\widetilde{H}^k(X) \cong \widetilde{H}^k(\mathcal{N})$.