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EXERCISE 1.

Dualize the hull resolution from exercise 5.3 to describe a free resolution of the
ided
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EXERCISE 2.

In the context of the previous exercise, illustrate the objects from the proof of the
resolution duality theorem for b = (4, 4, 1): identify the U; and their nerve N.

EXERCISE 3.

Let a, b € Z? linearly independent. Prove that a, b is alattice basis of Z2, if 0,a,b
are the only lattice pointsin the triangle with vertices 0, a, b.

(Hint: Why are there also in the parallelogram with vertices 0, a, b, a+ b no lattice
points except the four vertices?)

EXERCISE 4.

Say a matrix isintegral, if all entries arein Z. Let GL,(Z) be the set of integral
n x n-matrices G that are invertible, i.e., thereis an integral n x n-matrix G’ such
that GG’ = id. Show that an integral n x n-matrix G isinvertible if and only if the
determinant is +1.

(Hint: Use awell-known Linear Algebraformulafor the adjoint matrix.)



Extrablatt: Nerve Lemma (optional)

EXERCISE 1.

Suppose X = X' U X” are simplicial complexes. Show that there is a short exact
sequence of cochain complexes

0 C*(X' N X") «— C*(X)®C*(X") «— C*(X) «— 0

EXERCISE 2.

Suppose X and X" aresimplicial complexeson vertex sets[n] and ['], respectively.
Amapg¢: [n] — [n]issmplicia X — X' if ¢(0) € X’ foral o € X.

Show that the induced linear maps ¢*: CX(X’) — CX(X) are cochain maps, i.e.,
8¢ = ¢5. Conclude that there are induced homomorphisms ¢*: H¥(X’) — H*(X).

EXERCISE 3.

The barycentric subdivision of a simplicial complex X is a ssimplicial complex
bsd(X) on the vertex X whose simplicies are the chains:

{o1,...,0¢}ebsd(X) ifandonlyif o3<...<0y
(after reindexing if necessary).
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Let X = U, X; besimplicial complexes on [n], and denote the nerve by
N ={l c[N] : Nia X # 0}
Show that themap o — min{i : o € X } issimplicia bsd(X) —» N.

EXERCISE 4.

Let X = UN, X; be simplicial complexes on [n], so that H*(Nigy %) = 0fork > 0
and all | ¢ [N]. Denote the nerve by N. Set X’ := UI7' X with nerve A, and
Y := X' n Xy = URTH X N Xy with nerve A.

Show that there are commutative diagrams with exact rows

F"k(x/) F"k(Y) |:|'k+l(x) - ﬁk+1(x/) - o F"k+1(Y)

N | ! |

FKV) = A(Ng) — AR = A7) ——= AR ()

Use induction on N to deduce that H¥(X) = H¥(N).



