Freie Universität Berlin
Institut für Mathematik

Benjamin Nill
Christian Haase

Homework 7.

June 7, 2007
Due June 14, 2007

Exercise 1.

Dualize the hull resolution from exercise 5.3 to describe a free resolution of the ideal

$$
I=\left\langle x^{3}, y^{4}, z^{4}\right\rangle \cap\left\langle x, y^{2}, z\right\rangle \cap\left\langle x^{3}, z^{2}\right\rangle \cap\left\langle y^{3}, z^{2}\right\rangle \cap\left\langle x^{4}, y^{3}\right\rangle \cap\left\langle x^{3}, y^{4}\right\rangle .
$$

Exercise 2.

In the context of the previous exercise, illustrate the objects from the proof of the resolution duality theorem for $\mathbf{b}=(4,4,1)$: identify the U_{i} and their nerve \mathcal{N}.

Exercise 3.

Let $a, b \in \mathbb{Z}^{2}$ linearly independent. Prove that a, b is a lattice basis of \mathbb{Z}^{2}, if $0, a, b$ are the only lattice points in the triangle with vertices $0, a, b$.
(Hint: Why are there also in the parallelogram with vertices $0, a, b, a+b$ no lattice points except the four vertices?)

Exercise 4.

Say a matrix is integral, if all entries are in \mathbb{Z}. Let $\mathrm{GL}_{\mathrm{n}}(\mathbb{Z})$ be the set of integral $n \times n$-matrices G that are invertible, i.e., there is an integral $n \times n$-matrix G^{\prime} such that $G G^{\prime}=$ id. Show that an integral $n \times n$-matrix G is invertible if and only if the determinant is ± 1.
(Hint: Use a well-known Linear Algebra formula for the adjoint matrix.)

Extrablatt: Nerve Lemma (optional)

Exercise 1.

Suppose $X=X^{\prime} \cup X^{\prime \prime}$ are simplicial complexes. Show that there is a short exact sequence of cochain complexes

$$
0 \longleftarrow C^{\bullet}\left(X^{\prime} \cap X^{\prime \prime}\right) \longleftarrow C^{\bullet}\left(X^{\prime}\right) \oplus C^{\bullet}\left(X^{\prime \prime}\right) \longleftarrow C^{\bullet}(X) \longleftarrow 0
$$

Exercise 2.

Suppose X and X^{\prime} are simplicial complexes on vertex sets [n] and [n^{\prime}], respectively. A map $\phi:[n] \rightarrow\left[n^{\prime}\right]$ is simplicial $X \rightarrow X^{\prime}$ if $\phi(\sigma) \in X^{\prime}$ for all $\sigma \in X$.
Show that the induced linear maps $\phi^{k}: C^{k}\left(X^{\prime}\right) \rightarrow C^{k}(X)$ are cochain maps, i.e., $\delta \phi=\phi \delta$. Conclude that there are induced homomorphisms $\phi^{*}: \widetilde{H}^{k}\left(X^{\prime}\right) \rightarrow \widetilde{H}^{k}(X)$.

Exercise 3.

The barycentric subdivision of a simplicial complex X is a simplicial complex $\operatorname{bsd}(X)$ on the vertex X whose simplicies are the chains:

$$
\left\{\sigma_{1}, \ldots, \sigma_{r}\right\} \in \operatorname{bsd}(X) \quad \text { if and only if } \quad \sigma_{1} \prec \ldots \prec \sigma_{r}
$$

(after reindexing if necessary).

Let $X=\bigcup_{i=1}^{N} X_{i}$ be simplicial complexes on [n], and denote the nerve by $\mathcal{N}=\left\{I \subset[N]: \bigcap_{i \in I} X_{i} \neq \emptyset\right\}$.
Show that the map $\sigma \mapsto \min \left\{i: \sigma \in X_{i}\right\}$ is simplicial $\operatorname{bsd}(X) \rightarrow \mathcal{N}$.

Exercise 4.

Let $X=\bigcup_{i=1}^{N} X_{i}$ be simplicial complexes on [n], so that $\widetilde{H}^{k}\left(\bigcap_{i \in I} X_{i}\right)=0$ for $k \geq 0$ and all $I \subseteq[N]$. Denote the nerve by \mathcal{N}. Set $X^{\prime}:=\bigcup_{i=1}^{N-1} X_{i}$ with nerve \mathcal{N}^{\prime}, and $Y:=X^{\prime} \cap X_{N}=\bigcup_{i=1}^{N-1} X_{i} \cap X_{N}$ with nerve \mathcal{N}_{0}.
Show that there are commutative diagrams with exact rows

Use induction on N to deduce that $\widetilde{H}^{k}(X) \cong \widetilde{H}^{k}(\mathcal{N})$.

