Freie Universität Berlin
Institut für Mathematik

Homework 8.

June 14, 2007

Due June 21, 2007

Exercise 1.

Let $a_{1}, \ldots, a_{n} \in \mathbb{N}_{\geq 1}$ with greatest common divisor 1 . Then there are only finitely many natural numbers not contained in the semigroup $\mathbb{N}\left\{a_{1}, \ldots, a_{n}\right\}$. Prove this for $n=2$ (Bonuspoint for general n).
(Hint: For $n=2$ use and prove the fact that $a_{2}+a_{1} \mathbb{Z}$ generates $\mathbb{Z} / a_{1} \mathbb{Z}$.)

Exercise 2.

Let A be a finitely generated free abelian group, R an A-graded commutative ring, and $I \subsetneq R$ a homogeneous ideal. Show that I is a prime ideal if and only if the following implication holds for any $a \in A$: For $r, s \in R_{a}$ with $r s \in I$ it follows $r \in I$ or $s \in I$.
(Hint: Since $A \cong \mathbb{Z}^{d}$, one can use a suitable total ordering on A to define a leading term of an element in R. Then do induction.)

Exercise 3.

1. (Smith normal form) Let M be an integral $n \times m$-matrix. Then there exist matrices $U \in \mathrm{GL}_{\mathrm{n}}(\mathbb{Z})$ and $V \in \mathrm{GL}_{\mathrm{m}}(\mathbb{Z})$ such that $U M V$ is a diagonal $n \times m$-matrix with entries d_{1}, \ldots, d_{s} on the diagonal (called Elementarteiler) for $s:=\min (n, m)$, where d_{i} divides d_{i+1} for $i=1, \ldots, s-1$.

Give a proof of this statement in the case $m=n=2$.
(Hint: Show that it is possible by subtracting a row (respectively, column) from another row (respectively, column) to finally get a matrix where the upper left entry is the greatest common divisor of all entries.)
2. Application: Given generators $l_{1}, \ldots, l_{m} \in \mathbb{Z}^{n}$ of a lattice $L \subseteq \mathbb{Z}^{n}$. Form the $n \times m$-matrix \mathcal{L} with columns l_{1}, \ldots, l_{m}. Show that $A:=\mathbb{Z}^{n} / L$ is isomorphic to $\mathbb{Z}^{n-s} \oplus_{i=1}^{s} \mathbb{Z} / d_{i} \mathbb{Z}$ (in the notation of 1 . for $M:=\mathcal{L}$). Moreover, if A is free abelian of rank d, then $d=n-s$, and the \mathbb{Z}-linear map $\mathbb{Z}^{n} \rightarrow A \cong \mathbb{Z}^{d}$ is given by the $d \times n$-matrix consisting of the last d rows of U.

Exercise 4.

Let $L:=<(-1,3,5,3),(3,-2,-8,-2) \subseteq \mathbb{Z}^{4}$. Does this define an affine semigroup (in \mathbb{Z}^{4} / L)? Calculate the lattice ideal I_{L}.
(Hint: In Maple you may want to use the following commands: with(linalg): ismith (\mathcal{L}); with(PolynomialIdeals): Saturate $\left(I_{\mathcal{L}}\right) ;$)

