FREIE UNIVERSITÄT BERLIN Institut für Mathematik Benjamin Nill Christian Haase

HOMEWORK 8.

JUNE 14, 2007

DUE JUNE 21, 2007

Exercise 1.

Let $a_1, \ldots, a_n \in \mathbb{N}_{\geq 1}$ with greatest common divisor 1. Then there are only finitely many natural numbers not contained in the semigroup $\mathbb{N}\{a_1, \ldots, a_n\}$. Prove this for n = 2 (Bonuspoint for general *n*).

(*Hint:* For n = 2 use and prove the fact that $a_2 + a_1\mathbb{Z}$ generates $\mathbb{Z}/a_1\mathbb{Z}$.)

Exercise 2.

Let *A* be a finitely generated free abelian group, *R* an *A*-graded commutative ring, and $I \subsetneq R$ a homogeneous ideal. Show that *I* is a prime ideal if and only if the following implication holds for any $a \in A$: For $r, s \in R_a$ with $rs \in I$ it follows $r \in I$ or $s \in I$.

(*Hint:* Since $A \cong \mathbb{Z}^d$, one can use a suitable total ordering on A to define a leading term of an element in R. Then do induction.)

Exercise 3.

1. (*Smith normal form*) Let M be an integral $n \times m$ -matrix. Then there exist matrices $U \in GL_n(\mathbb{Z})$ and $V \in GL_m(\mathbb{Z})$ such that UMV is a diagonal $n \times m$ -matrix with entries d_1, \ldots, d_s on the diagonal (called *Elementarteiler*) for $s := \min(n, m)$, where d_i divides d_{i+1} for $i = 1, \ldots, s - 1$.

Give a proof of this statement in the case m = n = 2.

(*Hint:* Show that it is possible by subtracting a row (respectively, column) from another row (respectively, column) to finally get a matrix where the upper left entry is the greatest common divisor of all entries.)

2. Application: Given generators $l_1, \ldots, l_m \in \mathbb{Z}^n$ of a lattice $L \subseteq \mathbb{Z}^n$. Form the $n \times m$ -matrix \mathcal{L} with columns l_1, \ldots, l_m . Show that $A := \mathbb{Z}^n/L$ is isomorphic to $\mathbb{Z}^{n-s} \bigoplus_{i=1}^s \mathbb{Z}/d_i\mathbb{Z}$ (in the notation of 1. for $M := \mathcal{L}$). Moreover, if A is free abelian of rank d, then d = n - s, and the \mathbb{Z} -linear map $\mathbb{Z}^n \to A \cong \mathbb{Z}^d$ is given by the $d \times n$ -matrix consisting of the last d rows of U.

Exercise 4.

Let $L := < (-1, 3, 5, 3), (3, -2, -8, -2) \subseteq \mathbb{Z}^4$. Does this define an affine semigroup (in \mathbb{Z}^4/L)? Calculate the lattice ideal I_L .

(*Hint:* In Maple you may want to use the following commands: with(linalg): ismith(\mathcal{L}); with(PolynomialIdeals): Saturate($I_{\mathcal{L}}$);)