Freie Universität Berlin
Institut für Mathematik

Benjamin Nill
Christian Haase

Homework 9.

June 21, 2007
Due June 28, 2007

Exercise 1.

Let C be a d-dimensional (finitely generated, polyhedral, rational) cone in \mathbb{R}^{d}. Show that C is pointed if and only if the dual cone C^{\vee} has also dimension d.
(Hint: You may use duality $\left(C^{\vee}\right)^{\vee}=C$, and the facts that the boundary of C (respectively, C^{\vee}) is covered by the facets of C (respectively, C^{\vee}), and that C^{\vee} is generated by the outer normals of the facets of C.)

Exercise 2.

Let C as in the previous exercise. Show that C contains a lattice basis of \mathbb{Z}^{d}.
(Hint: Induction on the dimension, you may also use all facts in the hint of Exercise 1.)

Exercise 3.

Let C be the cone in \mathbb{R}^{4} generated by $(1,0,0,0),(0,1,0,0),(0,0,1,0),(1,2,3,5)$. Show that $(1,1,1,1)$ is contained in the Hilbert basis of $C \cap \mathbb{Z}^{4}$.

Exercise 4.

Let M be an integral $n \times m$-matrix. How can one compute a lattice basis of the kernel of M using Smith normal form? As an example, calculate a basis of the lattice of integer solutions to the equation $2 u_{1}+7 u_{2}=3 u_{3}+5 u_{4}$.
(Bonuspoint: Calculate the Hilbert basis of the affine semigroup of all nonnegative integer solutions (e.g., via the Lawrence ideal).)

