Freie Universität Berlin
Institut für Mathematik

Benjamin Nill
Christian Haase

Homework 10.

June 28, 2007
Due July 5, 2007

Exercise 1.

Let S be the A-multigraded polynomial ring. Let $a \in A$, and G a subset of monomials in S_{a}. Prove that G generates S_{a} as an S_{0}-module if and only if G generates the ideal $\left\langle S_{a}\right\rangle$.

Exercise 2.

(1) Find an example of a multigrading of S that is not positive, however still satisfies $S_{0}=k$
(2) Let deg : $\mathbb{Z}^{n} \rightarrow \mathbb{Z}$ via $e_{i} \mapsto 1$ (for $i=1, \ldots, n$) be a positive(?!) multigrading of S with kernel L. Calculate $\operatorname{pd}\left(\mathrm{I}_{\mathrm{L}}\right)$.

Exercise 3.

Let $n=2, Q=\mathbb{N}\{(1,1),(1,2),(1,-1),(1,-2)\}$. Find (with proof of completeness) all non-zero Betti numbers $\beta_{j, b}(j \in \mathbb{N}, b \in Q)$ of the corresponding lattice ideal.

Exercise 4.

Let $Q=\mathbb{N}\left\{a_{1}, \ldots, a_{6}\right\} \subseteq \mathbb{Z}^{3}$ be a pointed affine semigroup, and let Q span \mathbb{R}^{3}. What projective dimensions are possible for the lattice ideal of Q ?

