Freie Universität Berlin
Institut für Mathematik

Benjamin Nill
Christian Haase

Homework 11.

July 5, 2007

Due July 12, 2007

Exercise 1.

Let $L \subseteq \mathbb{Z}^{n}$ be a lattice. We define

$$
I(L):=<x^{c_{+}} y^{c_{-}}-x^{c_{-}} y^{c_{+}}: c \in L>.
$$

Show that a binomial of the form $x^{c_{+}} y^{c_{-}}-x^{c_{-}} y^{c_{+}}$is contained in every generating set of $I(L)$ (i.e., it is a minimal generator) if and only if c is M_{L}-primitive.

Exercise 2.

Let $L \subseteq \mathbb{Z}^{n}$ be a lattice. Show that
(1) M_{L} is the quotient of the free S-module on the generators $\left\{e_{u}: u \in L\right\}$ by the submodule generated by $x^{w-} e_{v+w}-x^{w+} e_{v}=0$ (for $v, w \in L$).
(2) $M_{L} \cong S[L] /<x^{u}-x^{v} z^{u-v}: u, v \in \mathbb{N}^{n}, u-v \in L>$.

Exercise 3.

Let L is the kernel of the map $(1,1,1)$. Draw a (schematic) picture of M_{L} and hull $\left(M_{L}\right)$. Which (and how many) faces are identified under the action of L ? Calculate a \mathbb{Z}^{3} / L-graded free resolution of S / I_{L} as in the lecture.

Bonuspoint: Try to draw a picture for the Laurent monomial module M^{\prime} generated by the set $<x^{u} y^{v} z^{w}: u+v+w=0$, not all three coordinates of (u, v, w) even $\}$. If possible, find a cellular minimal free resolution of M^{\prime} over $k[x, y, z]$.

Exercise 4.

Let L be the kernel of the matrix $\left(\begin{array}{llll}3 & 2 & 1 & 0 \\ 0 & 1 & 2 & 3\end{array}\right)$. Calculate (if possible) the hull resolution of M_{L} and show that it is minimal. Calculate for representative faces their labels in \mathbb{Z}^{4} and in $\mathbb{Z}^{4} / L \cong \mathbb{Z}^{2}$.

