FU"BInstitut für MathematikBenjamin NillChristian Haase

1.

H 11. J 5, 2007 D J 12, 2007

Ε

Let $L \subseteq \mathbb{Z}^n$ be a lattice. We define

 $I(L) := < x^{c_+} y^{c_-} - x^{c_-} y^{c_+} : c \in L > .$

Show that a binomial of the form $x^{c_+}y^{c_-} - x^{c_-}y^{c_+}$ is contained in every generating set of I(L) (i.e., it is a minimal generator) if and only if *c* is M_L -primitive.

E 2.

Let $L \subseteq \mathbb{Z}^n$ be a lattice. Show that

- (1) M_L is the quotient of the free *S*-module on the generators $\{e_u : u \in L\}$ by the submodule generated by $x^{w_-}e_{v+w} x^{w_+}e_v = 0$ (for $v, w \in L$).
- (2) $M_L \cong S[L] / \langle x^u x^v z^{u-v} : u, v \in \mathbb{N}^n, u v \in L \rangle$.

E 3.

Let *L* is the kernel of the map (1, 1, 1). Draw a (schematic) picture of M_L and hull (M_L) . Which (and how many) faces are identified under the action of *L*? Calculate a \mathbb{Z}^3/L -graded free resolution of S/I_L as in the lecture.

Bonuspoint: Try to draw a picture for the Laurent monomial module M' generated by the set $\langle x^{u}y^{v}z^{w} : u + v + w = 0$, not all three coordinates of (u, v, w) even}. If possible, find a cellular minimal free resolution of M' over k[x, y, z].

E 4.

Let *L* be the kernel of the matrix $\begin{pmatrix} 3 & 2 & 1 & 0 \\ 0 & 1 & 2 & 3 \end{pmatrix}$. Calculate (if possible) the hull resolution of M_L and show that it is minimal. Calculate for representative faces their labels in \mathbb{Z}^4 and in $\mathbb{Z}^4/L \cong \mathbb{Z}^2$.