Freie Universität Berlin

GITTERPOLYTOPE

Wintersemester 2005/2006

Insititut für Mathematik II Christian Haase Andreas Paffenholz

5. Aufgabenblatt

5. Dezember 2005

AUFGABE 1.

Das *normalisierte Volumen* vol P eines Gitterpolytops P ist definiert als das d!fache des euklidischen Volumens. Mit $w_F(P)$ bezeichnen wir die *Facettenweite*eines Polytops P bzgl. der Facette F, also

$$\min_{n} (\max(\langle n, x \rangle \mid x \in P) - \min(\langle n, x \rangle \mid x \in P))$$

wobei n über alle ganzzahligen Normalenvektoren der Facette F läuft.

Sei S ein Gittersimplex. Zeige, daß für jede Facette F von S

$$vol(S) = vol(F)w_F(S)$$

gilt.

Folgere daraus:

- (1) Für jeden Gittersimplex $S = \text{conv}(v_0, v_1, \dots, v_d)$ gilt vol(S) = det(S), wobei $\text{det}(S) := \text{det}(v_1 v_0, \dots, v_d v_0)$.
- (2) Für jedes Gitterpolytop P gilt $vol(P) \in \mathbb{Z}$.

AUFGABE 2.

Seien P und Q zwei Gitterpolytope, die eine unimodulare Triangluierung besitzen. Zeige, daß dann auch $P \times Q$ eine unimodulare Triangulierung hat.

AUFGABE 3.

Sei B_3 das Birkhoff-Polytop der 3×3 -Permuationsmatrizen. Bestimme die Ecken und Facetten von B_3 . Untersuche die Kombinatorik und zeige, daß B_3 kombinatorisch äquivalent $(\Delta \times \Delta)^*$ ist, wobei Δ ein Dreieck ist und P^* das zu P duale Polytop bezeichnet.

(Wenn
$$0 \in \Delta$$
, dann ist $(\Delta \times \Delta)^* = \Delta \diamond \Delta := conv(\{0\} \times \Delta \cup \Delta \times \{0\}).)$