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2. Research Report

This is a report on the results obtained by the Emmy Noether Research Group “Lattice
Polytopes” during the funding period 7/2005-12/2008. During this period, Christian
Haase used the possibilities offered by the Emmy Noether grant to build the group,
winning Benjamin Nill from Tübingen and Andreas Paffenholz from TU Berlin. These
two excellent junior mathematicians incorporated their own profile into the work of
the group, and the intended research program could be tackled fairly quickly and
successfully.

Most notably, a boundedness result of Lagarias/Ziegler was generalized to polytopes
without interior lattice points (see §2.3 The Degree of Lattice Polytopes). Degree
bounds (perhaps surprisingly low) could be provided for generators of certain toric
ideals (see §2.4 Toric Gröbner Bases). The study of permutation polytopes (see §2.5)
was not anticipated in the original proposal. It grew out of hallway discussions with
the local group theorist Barbara Baumeister.

While the group was able to deal with most of the projected program, the question
for necessary conditions for the existence of unimodular triangulations and related
properties proved to be even harder than expected. To cope with these difficulties,
the group joined forces with other researchers during an Oberwolfach Mini-Workshop
in 2007 (and a follow-up at AIM in 2009). With the development of a new polymake
lattice point environment (see §2.7), and with the help of student assistant Benjamin
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Müller, the Research Group should be on track to experiment and to find interesting
examples.

The results in this report are grouped into five categories: Ehrhart Theory, Unimodular
Triangulations, Permutation Polytopes, Mirror Symmetry, and Polymake. In each
section the relevant notions are briefly introduced, and the most important findings
are described. Ongoing research and future directions are not treated here, but in the
attached proposal for an extension. Let us start with an introduction into the field.

2.1. Field of Research. How many non–negative integral solutions does the following
equation have?1

12 223x1 + 12 224x2 + 36 674x3 + 61 119x4 + 85 569x5 = 89 643 482

Questions like the above have applications in a wealth of areas outside mathematics.
At the same time, they appear in different disguises in various mathematical fields.
For example, the original question has a number theoretical flavor. But in view of a
discrete geometer it actually asks for the number of lattice points in a polyhedron.
In commutative algebra one would ask for the Hilbert series of a graded ring, and
in algebraic geometry for the Todd class of a toric variety. The (apparently simpler)
question whether there is a solution at all is an integer linear optimization (knapsack)
problem.

Single interactions between these disciplines have been explored in the past. Classic
geometry of numbers was an immensely successful application of (discrete) geometric
methods to number theory around a century ago [GL87]. Enumeration of solutions of
Diophantine equations has stimulated interactions between commutative algebra and
enumerative combinatorics since the 70’s [Sta96, BH93]. The theory of toric vari-
eties (algebraic geometry & discrete geometry) has developed into an established and
very active field of research [Dan78, Ewa96, Ful93, Oda88]. More recently, we have
seen applications of Gröbner bases to optimization problems – and vice versa (com-
putational algebra & integer programming) [HT98, Stu96, MS05], Dedekind sums
in lattice point problems (number theory & discrete geometry) [BP99, Pom93], and
ideal theoretic investigations of polytopes (commutative algebra & discrete geome-
try) [BGT97]. Lattice polytopes have been “discovered” by representation theorists
(Kostka and Littlewood-Richardson coefficients) [BZ88, BZ01, KT99], theoretical
physicists (Mirror symmetry) [Bat94, BD96, BB96], and statisticians (Contingency
tables) [DS98, CDDH05].

2.2. Background and Notation. In what follows, P will be a lattice polytope. That
is, P is the convex hull in Rn of finitely many points in the lattice Zn. We will identify
two lattice polytopes if they are related by a lattice preserving affine map. Up to this
lattice equivalence, we can always assume that our polytope is n-dimensional. It is
often convenient to consider the cone σP ⊂ Rn+1 generated by P × {1}. For more
on convex polytopes and lattices we refer to [Bar02].

A unimodular simplex is a lattice polytope which is lattice equivalent to the standard
simplex: the convex hull of the origin 0 together with the standard unit vectors ei

(1 ≤ i ≤ n). Equivalently, unimodular simplices are characterized as the n-dimensional
lattice polytopes of minimal possible Euclidean volume 1/n ! .

1From [AL02]. There is a unique solution, but commercial IP solvers need hours to compute
it [LHH+04].
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Many properties of the combinatorial objects have direct translations to algebraic
objects like semigroup algebras, monomial ideals and toric varieties, via the simple
correspondence

lattice point Laurent monomial

v = (v1, . . . , vn) ∈ Zn ←→ xv := xv1
1 · . . . · x

vn
n ∈ k[x±1

1 , . . . , x±1
n ].

Algebraic geometers and commutative algebraists are interested in the properties of
the graded semigroup ring RP = k[σP ∩Zn+1] and the corresponding projective toric
variety XP = Proj RP .

2.3. Ehrhart Theory. Many counting problems can be phrased as counting lattice
points in (dilates) of polytopes or polyhedral complexes [Loe05, BR07a]. By a funda-
mental result of Eugène Ehrhart, the number of lattice points in positive dilates kP
of P is a polynomial function in k ∈ Z>0. (See [Ehr67, BR07a].) Consequently, the
generating function – the Hilbert function of RP – has a special form.

HilbRP
(t) =

∑
v∈σP∩Zn+1

tvn+1 =
∑
k≥0

#(kP ∩ Zn) tk =
h∗(t)

(1− t)n+1
,

with a polynomial h∗ ∈ Z≥0[t] of degree d ≤ n [Sta93, BS07].

The Degree of Lattice Polytopes. The degree d of h∗ is called the degree of P . The
polytope P has no interior lattice points if and only if the degree of P is strictly smaller
than n. Moreover, the smaller the degree the more multiples of P contain no interior
lattice points. The fundamental goal with respect to this new invariant is to find a
classification of lattice polytopes with given degree. This is known for degrees 0 and
1 [BN07].

In joint work with Sam Payne [HNP09], Christian Haase and Benjamin Nill could
show that a small degree implies strong geometric and structural consequences: P
splits into n − (d2 + 19d − 4)/2 Cayley factors. This means that P is equivalent to
the convex hull of (P1, e1), . . . , (Pr, er) ⊂ Rs+r for polytopes P1, . . . , Pr ⊂ Rs with
s ≤ (d2 + 19d − 4)/2. This result answers positively a question of Benjamin Nill
and Victor Batyrev in [BN07]. The proof is based on an observation [Nil08] about
lattice polytopes of fixed degree and linear coefficient h∗1, which also includes a purely
combinatorial strengthening of a recent theorem of Batyrev [Bat07].

As an application, Haase/Nill/Payne prove the following conjecture of Batyrev [Bat07]:
up to pyramid constructions, there is only a finite number of lattice polytopes of given
degree and leading coefficient h∗d. This is a vast generalization of the theorem of Dou-
glas Hensley and Jeffrey Lagarias/Günter Ziegler which says that in fixed dimension
there are, up to lattice equivalence, only finitely many polytopes with given positive
number of interior lattice points [Hen83, LZ91].

There is a close relation of these results to adjunction theory of toric varieties. In the
intensively studied field of adjunction theory the main question is to classify polarized
varieties X having large nef-value, namely, where an ample line bundle L has to be
multiplied by a large multiple k so that KX + kL is nef. Continuing [HNP09], this
relation was further investigated by Alicia Dickenstein, Sandra Di Rocco, and Ragni
Piene in a new preprint [DRP08], where they could sharpen the bounds from order
O(d2) to 2d + 1 for certain smooth toric varieties.
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Lattice Point Generating Functions. The lattice point ↔ Laurent monomial corre-
spondence in the introduction allows us to encode the set of lattice points in the
polytope P or in a pointed rational cone σ by the sum of the corresponding mono-
mials: SP (x) =

∑
v∈P∩Zn xv is a Laurent polynomial, and Sσ =

∑
v∈σ∩Zn+1 xv

can be interpreted as a rational function [BR07a]. Alexander Barvinok used this
encoding in his acclaimed polynomial time lattice point counting algorithm in fixed
dimension [Bar94a, Bar94b]. Matthias Beck, Christian Haase and Frank Sottile review
elementary proofs of structural results of Brion and of Lawrence-Varchenko on these
lattice-point enumerator generating functions SP and Sσ [BHS06].

The generating functions also have applications in number theory. James Pommer-
sheim introduced Dedekind sums in Ehrhart theory [Pom93]. Matthias Beck, Christian
Haase and Asia Matthews [BHM08] study higher-dimensional analogs of Dedekind-

Carlitz polynomials Carlitz (u, v; a, b) :=
∑b−1

k=1 ub
ka
b cvk−1, where u and v are inde-

terminates and a and b are positive integers. Carlitz proved that these polynomials
satisfy a reciprocity law from which one easily deduces many classical reciprocity the-
orems for the Dedekind sum and its generalizations. Beck/Haase/Matthews illustrate
that Dedekind-Carlitz polynomials appear naturally in lattice point generating func-
tions and use this fact to give geometric proofs of the Carlitz reciprocity law and
various extensions of it. Their approach gives rise to new reciprocity theorems and
computational complexity results for Dedekind-Carlitz polynomials.

2.4. Unimodular Triangulations. A face-to-face subdivision of P into unimodular
simplices is a unimodular triangulation. A triangulation is called regular (sometimes
also called projective or coherent) if the simplices are the domains of linearity of a
convex function. Presumably, polytopes that admit a unimodular triangulation are
very rare.

Projective Normality. There is an entire network of related combinatorial and algebraic
properties of polytopes P and cones σ (cf. the hierarchy [MFO07, p.2313]). Christian
Haase, Diane Maclagan and Takayuki Hibi organized an Oberwolfach Mini-Workshop
on the subject. As a direct result of this meeting Christian Haase, Benjamin Nill, An-
dreas Paffenholz and Francisco Santos were able to settle the ample+nef question for
general (singular) toric surfaces [HNPS08]. Translated back into polyhedral language,
the authors showed that for two lattice polygons P and Q any lattice point in their
Minkowski sum can be written as a sum of a lattice point in P and one in Q, provided
the normal fan of P is a subdivision of the normal fan of Q. The same question is
open in dimension 3, even if we assume that P = Q describes a smooth toric variety
XP = Proj RP .

Toric Gröbner Bases. There is a close connection between the Gröbner bases of the
defining ideal IP of RP = k[x1 . . . xN ]/IP (N = |P ∩ Zn|) on the one hand, and
the regular triangulations of P on the other [GKZ94, Stu96]. Kapranov, Sturmfels
and Zelevinsky show that the ideal IP has a squarefree initial ideal if and only if P
admits a regular unimodular triangulation [KSZ92]. In this case, the corresponding
Gröbner basis can be read off from the triangulation. In this context, there is the
folklore conjecture that the ideal IP should be generated by quadratics or even have
a quadratic Gröbner basis if the projective toric variety XP = ProjRP is smooth
(cf. the discussion by Allen Knutson [BCF+05, p.186f]).
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Families of such smooth (sometimes also called regular or Delzant) polytopes are
given by generic transportation polytopes and by smooth reflexive polytopes (see
§2.6). Christian Haase and Andreas Paffenholz developed techniques to construct
(quadratic) toric Gröbner bases and applied them to these classes.

• Contrary to previous expectations, Haase/Paffenholz showed that IP does admit
a quadratic Gröbner basis if P is a smooth 3 × 3 transportation polytope [HP09].
This should be contrasted by the fact that the ideal of the 3× 3 Birkhoff polytope
– a non-smooth transportation polytope – is not quadratically generated. Matthias
Lenz [Len07] in his Master’s thesis was able to adapt the method to show that
the toric ideals of all flow polytopes, smooth or not, are generated in degree three.
(Flow polytopes are the natural generalization of transportation polytopes. They
can be realized as faces of transportation polytopes.) In the case of the n × n
Birkhoff polytope this was conjectured by Diaconis and Eriksson [DE06, Conj. 7].

• Smooth reflexive polytopes have been classified up to dimension 8 (cf. §2.6).
Haase/Paffenholz used this classification and a project-and-lift heuristic to con-
struct quadratic Gröbner bases for most of the polytopes in the data base [HP07].

2.5. Permutation Polytopes. This project grew out of a weekly joint seminar with
Barbara Baumeister during the 2005/6 academic year.

A permutation polytope is the convex hull in Rn×n of a subgroup of the n×n permuta-
tion matrices. An important example is given by the Birkhoff polytope: the convex hull
of all permutation matrices. This is an extensively studied polytope appearing in many
different fields of mathematics (see e.g. Brualdi and Gibson [BG77a, BG77b, BG77c]
and Billera and Sarangarajan [BS96]).

In contrast, general permutation polytopes have attracted little attention in the past.
A number of authors have studied special classes: Richard Brualdi and Bolian Liu com-
pute basic invariants of the polytope of the alternating group [BL91]; for this polytope,
Jeffrey Hood and David Perkinson [HP04] describe exponentially many facets. John
Collins and David Perkinson [CP04] observe that Frobenius polytopes have a particu-
larly simple combinatorial structure, and Hana Steinkamp [Ste99] adds results about
dihedral groups. Most recently, Robert Guralnick and David Perkinson [GP06] inves-
tigate general permutation polytopes, their dimension, and their graph from a group
theoretic viewpoint.

The aim of this project is to extend known results on the Birkhoff polytope to the
setting of permutation polytopes, or even more general, representation polytopes. The
driving hope is to use polyhedral methods to derive results in representation theory of
permutation groups. This has turned out to be quite successful. Still, many unsolved
questions are open which can be tackled from convex geometric, computational or
group-theoretic perspectives. In a joint paper with Barbara Baumeister, Christian
Haase, Benjamin Nill and Andreas Paffenholz gave a first account of their systematic
study of permutation polytopes [BHNP09].

• The authors clarify the relevant notions of equivalence of group representations:
the polytope does not reflect multiplicities of irreducible representations or auto-
morphisms of the group.

• They show that if a permutation polytope is combinatorially a product, then the
permutation group has a natural product structure.
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• They classify centrally symmetric permutation polytopes via certain subspaces of
F

r
2. In particular, the group has to be an elementary abelian 2-group, and the

number of vertices has to be a power of 2.

• They use combinatorial properties of (faces of) permutation polytopes to classify
≤ 4-dimensional permutation polytopes and the corresponding permutation groups.

• They give a list of open questions and conjectures.

2.6. Mirror Symmetry. The mirror symmetry conjecture in string theory predicts
that Calabi-Yau varieties come in pairs (X, X∨) which determine “the same physics”
[Mor97, CK99]. One consequence of this statement is the fact that the stringy Hodge
numbers of X and X∨ satisfy a mirror symmetry.

Nef-partitions. There is a general framework developed by Victor Batyrev and Lev
Borisov for the construction of mirror pairs using toric geometry. The key player is the
notion of a Gorenstein polytope. We call a lattice polytope reflexive if its polar dual
with respect to an interior lattice point is again integral. Then, a lattice polytope P
so that the dilation rP is reflexive for some r ∈ Z>0 is a Gorenstein polytope of index
r. Some Gorenstein polytopes admit nice decompositions – nef-partitions – giving rise
to Calabi-Yau complete intersections. This additional structure allows a combinatorial
duality extending polar duality for reflexive polytopes. The Calabi-Yau’s obtained this
way satisfy the Hodge number test [BB96, BD96].

Benjamin Nill and Victor Batyrev clarify precisely how nef-partitions fit into this set-
ting [BN08]. For this, they consider the duality between two nef-partitions as a duality
between two Gorenstein polytopes P and P ∗ of index r together with selected special
(r−1)-dimensional simplices S in P and S′ in P ∗. Different choices of these simplices
suggest an interesting relation to Homological Mirror Symmetry.

Recently, this notion of a special simplex has also been prominently used by Chris-
tos Athanasiadis to prove Stanley’s conjecture on the unimodality of the h∗-vector of
Birkhoff polytopes [Ath05]. In this context Batyrev/Nill also give a simpler combi-
natorial proof of a result of Winfried Bruns and Tim Römer on projectively normal
Gorenstein polytopes [BR07b].

Beyond stringy Hodge numbers, mirror symmetry yields predictions about the the
fundamental groups and integral cohomologies of Calabi-Yau’s. In their combinatorial
computation, lattices generated by lattice points in skeletons of reflexive polytopes play
an essential role. Christian Haase and Benjamin Nill prove that the lattice generated
by all lattice points in a reflexive polytope of dimension ≥ 3 is already generated by
lattice points in codimension two faces [HN08]. This answers a question of J. Morgan.

Toric SYZ. Strominger, Yau and Zaslow proposed an interpretation of mirror symme-
try as a duality of special Lagrangean torus fibrations [SYZ96] (compare also [Mor99]).
In the reflexive polytope case, Christian Haase and Ilia Zharkov had previously de-
scribed a combinatorial model for the conjectured integral affine structure on the
base of the fibration. The model has mirror symmetry built in [HZ02, HZ03]. Now,
Haase/Zharkov have extended their model to the case of nef-partitions. They prove
that this base space is topologically a product of spheres [HZ05].

Reflexive Dimension. Besides the original physical motivation, reflexive polytopes are
increasingly emerging as useful tools for algebraic applications in combinatorics (and
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vice versa). There is a close relation to polytopal adjunction theory discussed in
§2.3. In fixed dimension, there are only finitely many reflexive and Gorenstein poly-
topes [KS98, KS00]. On the other hand, Christian Haase and Ilarion Melnikov show
that every given lattice polytope P appears as a face of some, possibly high dimen-
sional, reflexive polytope [HM06]. Call the smallest dimension of such a reflexive
polytope the reflexive dimension refldim(P ) of P . Then, Haase/Melnikov use a
number theoretic result of Michael Vose on Egyptian fractions [Vos85] to give bounds
on the reflexive dimension of dilations:

m log log k ≤ refldim(kP )− refldim(P ) ≤M
√

log k

for constants m, M .

Toric Fano Varieties. A natural generalization of reflexive polytopes are Fano poly-
topes: lattice polytopes that contain the origin in their interiors and whose vertices are
primitive. In algebraic geometry, Fano varieties play an especially important role, e.g.,
in the Minimal Model Program. It is desirable to find classification results and bounds
on their invariants. Three years ago, Cinzia Casagrande [Cas06] proved ρX ≤ 2n
for the Picard number ρX of an n-dimensional Q-factorial Gorenstein toric Fano va-
riety X. She also classified the ρX = 2n case. Benjamin Nill and Mikkel Øbro
[Øbr08, NØ08] extended this result by giving a complete list for ρX = 2n− 1. Ben-
jamin Nill and Maximilian Kreuzer gave a classification of ≤ 5-dimensional nonsingular
toric Fano varieties. Later, Mikkel Øbro continued independently up to dimension 8
[Øbr07a, Øbr07b]. In dimension two, (singular) Fano varieties are called log Del Pezzo
surfaces. Benjamin Nill and Dimitrios I. Dais [DN08] could improve in the toric case
a theorem due to Viacheslav V. Nikulin [Nik89], which bounds the Picard number in
terms of the index `X of the log Del Pezzo surface X. Alexander Kasprzyk, Benjamin
Nill and Maximilian Kreuzer [KKN08] provided cubic bounds on the volume of the
corresponding Fano polygons, efficient classification algorithms and complete lists for
`X ≤ 16.

2.7. Polymake. The software polymake [GJ, GJ05] is a general framework for compu-
tations with polyhedra. Given a polyhedron defined by points or inequalities, polymake
works with a large set of rules that specify how new properties may be derived from
known ones. polymake comes with several clients that compute new properties ac-
cording to the rules, but it may also call external software, if available. polymake has
been developed at TU Berlin by Michael Joswig and Ewgenij Gawrilow since 1997. Its
current version is 2.3.

Benjamin Müller and Andreas Paffenholz have written a new set of rules that enables
polymake to compute properties that are specific for lattice polytopes, like the number
of lattice points inside a polytope, or its h∗-vector. These new properties will be
contained in the upcoming release 3 of polymake.

This project had two parts:

• Interfaces to existing software.

There already exist software packages that can compute various properties of
lattice polytopes. Müller/Paffenholz have implemented interfaces that call the ap-
propriate program for the production of these properties. So far, the following
programs can be used:

– normaliz [BK, BK01] computes Hilbert bases, h∗-polynomials, and volumes.
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– LattE [LHYT, LHTY04, Köp], computes generating functions for lattice points in
a polytope, and derives the number of lattice points and the Ehrhart polynomial.

– 4ti2 [4ti] can solve systems of equations over Z, and uses this to compute Hilbert
bases of cones and Gröbner bases of the corresponding toric ideals.

• Rules that do not depend on external software.

Müller/Paffenholz have implemented rules for several important properties of
lattice polytopes that are not implemented in any other software package. This e.g.
includes the possibility to decide whether a polytope is reflexive or smooth, or the
computation of its facet width.

Many of these properties may be obtained in various different ways. This is
reflected in the implementation by rules that choose an efficient way of computing
a property depending on what data is already known.
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1996.

[Ste99] Hana Steinkamp. Convex polytopes of permutation matrices. Bachelor thesis, The Division
of Mathematics and Natural Sciences, Reed College, 1999.
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• Alcalá de Henares, Spanien, “Workshop on Geometric and Topological Com-
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• Oldenburg, Colloquium (16. - 17. November 2006)
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• Univ. of Catania, Workshop “P.R.A.G.MAT.I.C. 2008” (13. - 31. Juli 2008)

I Andreas Paffenholz:
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• Snowbird, USA, Conference “Discrete Geometry – 20 years later” (18. Juni -
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• Alcalá de Henares, Spanien, Workshop on Geometric and Topological Combi-

natorics (30. August - 6. September 2006)
• Magdeburg, “Kolloquium über Kombinatorik”(16. - 18. November 2006)
• Berlin, DMV-Tagung (26. - 30. März 2007)
• Oberwolfach, Mini–Workshop “Projective Normality of Smooth Toric Vari-
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2.11. Conference Organization.

4.2009 Workshop Combinatorial challenges in toric varieties American Institute
of Mathematics; funded by AIM, NSF; Christian Haase, Joseph Gube-
ladze and Diane Maclagan

4.2009 AMS Special Session Algebra & Number Theory with Polytopes in San
Francisco; Matthias Beck and Christian Haase

1.2009 Arbeitsgemeinschaft “h∗-polynomials” at FU Berlin; Christian Haase,
Benjamin Nill and Andreas Paffenholz

9.2008 Minisymposium at the DMV Annual Meeting in Erlangen; Christian
Haase, Benjamin Nill and Andreas Paffenholz

4.2008– Seminar Days Model Selection in Berlin, Darmstadt, Leipzig, Magde-
burg; Christian Haase, Raymond Hemmecke, Thomas Kahle and Alexan-
der Schliep

4-7.2008 Research Seminar Tropical Mathematics at FU Berlin; Christian Haase,
Walter Gubler, Michael Joswig and Bernd Sturmfels

8.2007 Mini-Workshop Projective Normality of Smooth Toric Varieties in Ober-
wolfach; Christian Haase, Takayuki Hibi and Diane Maclagan

5-7.2007 (Pre)Doc Program, FU Berlin; funded by Graduiertenkolleg Methods for
Discrete Structures, Emmy Noether; Christian Haase

3.2007 Arbeitsgemeinschaft “Gorenstein and Reflexive Polytopes” at FU Berlin;
Christian Haase, Benjamin Nill and Andreas Paffenholz

6.2006 Second AMS/IMS/SIAM Conference Integer Points in Polyhedra in
Snowbird, UT; funded by NSF; Matthias Beck, et al.

8.2005 Duke-Berlin Geometry and Physics Festival FU Berlin; funded by NSF,
SFB 647; Christian Haase and Sven Rinke

Berlin, December 10, 2008
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