Research Group Lattice Polytopes |
|
|
class date |
Contents |
Notes | last modified |
04/14 |
Basics lattices Hilbert bases subdivisions abd triangulations |
||
04/21 |
Shellings and Euler characteristic Ehrhart Theory generating functions examples integer point generating function and series Ehrhart's theorem |
||
04/28 | no class | ||
05/05 |
Ehrhart's theorem h*-polynomial degree and codegree, normalized volume Stanley's reciprocity theorem Ehrhart reciprocity |
||
05/12 |
Ehrhart reciprocity Stanley's nonnegativity theorem Brianchon-Gram identity Brion's theorem signed decompositions of simplicial cones |
||
05/19 |
signed decompositions of simplicial cones Barvinok's algorithm Geometry of Numbers Blichfeldt's theorem Minkowski's first theorem |
||
05/26 | |||
06/02 | |||
06/09 | |||
06/16 | |||
06/23 |
Unimodular triangulations pulling subdivisions regular full triangulations exist unimodular triangulations don't Paco's Lemma |
||
06/30 |
applications of Paco's Lemma Knudsen-Mumford-Waterman Theorem |
||
07/07 | Gorenstein polytopes with RUT have unimodal h* vector | ||
07/14 |
date |
Title |
speaker | references |
04/15 | polygons and the number 12 | Benjamin | [PR] |
04/22 | polygons and onion skins | Therese | [HS] |
05/06 | lattice width | Matthias | [HZ] |
05/13 | Gröbner bases, Graver bases and integer programming | Benjamin | [AWW] |
05/20 | Roots of Ehrhart polynomials | Marianne | |
05/27 | applications of Minkowski's theorems | Moritz | [B1], Ch. VII.4 |
06/03 | Short vectors in lattices: LLL and PSLQ | Moritz | [B2], Ch. 12 & [PSLQ] |
06/10 | Fourier series and periodic functions on Z | Felix | [BR], Ch. 7 |
06/17 | Dedekind sums | Felix | [BR], Ch. 8 |
06/24 | integer Carathéodory | Kaie | [BGHMW] & [Seb] |
07/01 | unimodular triangulations of 3-polytopes | Kaie | [KS] |
07/08 | Algorithms to compute Hilbert bases | Lars | [H] |
07/15 | What I did this summer | Benjamin |
date |
Contents |
due |
04/14 | lattices and shellings | 04/21 |
04/21 | Ehrhart polynomials | 05/05 |
05/05 | Ehrhart polynomials II | 05/12 |
05/12 | Reciprocity | 05/19 |
05/19 | Minkowski | 05/26 |
05/26 | Lattices | 06/02 |
06/02 | Width | 06/09 |
06/09 | Finiteness Theorem | 06/16 |
06/16 | Gorenstein and Reflexive Polytopes | 06/23 |
06/23 | Unimodular Triangulations, Pulling | |
06/30 | Unimodular Triangulations, Facet Width One | |
07/07 | ||
07/14 |
Text Books | |
[AZ] | Aigner, Martin; Ziegler, Günter: Proofs from THE BOOK. Springer-Verlag, Berlin. viii+199. (1998). [3-540-63698-6] |
[B1] | Barvinok, Alexander: A course in convexity. Graduate Studies in Mathematics. 54. Providence, RI: American Mathematical Society (AMS). x, 366 p. (2002). [ISBN 0-8218-2968-8/hbk; ISSN 1065-7339] |
[B2] | Barvinok, Alexander: Integer Points in Polyhedra. Zurich Lectures in Advanced Mathematics. European Mathematical Society (EMS), 2008. |
[BG] | Bruns, Winfried; Gubeladze Joseph: Polytopes, Rings, and K-Theory. Springer to appear 2009. |
[BR] | Beck, Matthias; Robins, Sinai: Computing the continuous discretely. Integer-point enumeration in polyhedra. Springer Undergraduate Texts in Mathematics, to appear. |
[H] | Hemmecke, Raymond: Representations of lattice point sets: Theory, Algorithms, Applications. Habilitation thesis, University Magdeburg, 2006. |
[Sch1] | Schrijver, Alexander: Theory of linear and integer programming. Repr. Chichester: Wiley. xi, 471 p. (1998). [ISBN 0-471-98232-6/pbk] |
[Sch2] | Schrijver, Alexander: Combinatorial Optimization. Polyhedra and Efficiency. Repr. Springer |
[Stu] | Sturmfels, Bernd: Gröbner bases and convex polytopes. University Lecture Series. 8. Providece, RI: American Mathematical Society (AMS). xi, 162 p. (1996). [ISBN 0-8218-0487-1] |
[Zie] | Ziegler, Günter, Lectures on Polytopes, Springer |
Journal Articles | |
[AWW] | Aardal, Karen; Weismantel, Robert; Wolsey, Laurence: Non-standard approaches to integer programming. Discrete Applied Mathematics 123 (2002) 5 74 [PDF] |
[BGHMW] | Bruns, Winfried; Gubeladze, Joseph; Henk, Martin; Martin, Alexander; Weismantel, Robert: A Counterexample to an Integer Analogue of Carathéodory's Theorem J. Reine Angew. Math. 510 (1999), 179-185 [PDF] |
[PSLQ] | Ferguson, Helaman; Bailey, David; Arno, Stephen: Analysis of PSLQ, An Integer Relation Finding Algorithm. Math. Comput. 68, 351-369, 1999. |
[HM] | Haase, Christian; Ilarion Melnikov: The reflexive dimension of a lattice polytope. Annals of Combinatorics, 10:211-217, 2006. [PDF] |
[HS] | Haase, Christian; Schicho, Josef: Lattice Polygons and the number 2i+7. Am. Math. Mon. February 2009. math.CO/0406224 |
[HZ] | Haase, Christian; Ziegler, Günter: On the maximal width of empty lattice simplices. European J. Combinatorics , 21(1):111-119, 2000. [PDF] |
[KS] | Kantor, Jean-Michel; Sarkaria, Karanbir: On primitive subdivisions of an elementary tetrahedron Pacific J. Math. 211 (2003), 123-155 PJM |
[PR] | Poonen, Bjorn; Rodriguez-Villegas, Fernando: Lattice polygons and the number 12. Am. Math. Mon. 107, No.3, 238-250 (2000) [PS] |
[Sca] | Scarf, Herbert: Integral polyhedra in three space. Math. Oper. Res. 10 (3) 403-438 (1985). [ISSN 0364-765X] |
[Seb] | András Sebö: Hilbert bases, Carathéodory's Theorem and Combinatorial Optimization in Ravindran Kannan and William R. Pulleyblank (eds.) Integer Programming and Combinatorial Optimization Math. Prog. Soc., Univ. Waterloo Press 1990, 431-456 [PS] |
[Ver] | R. Vershynin Integer Cells in Convex Sets. math.FA/0403278 |